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1. INTRODUCTION

It is well known that the regenerative nature of a cutting force causes machine tool chatter.
The regenerative chatter problem can be represented as a time-delayed displacement
feedback system, and several techniques developed for control theory can be used to
ascertain the stability conditions of the chatter.

Various criteria have been used successfully to determine the stability characteristics of
dynamical systems. Most common techniques use the Nyquist criterion to establish
whether a certain cutting configuration is stable or unstable [1, 2].

A convenient way to represent the stability condition of a system is to plot its stability
chart. A stability chart is a two-dimensional map of stability regions for two feedback
parameters, in this case, they are the magnitude of the feedback force and the time-delay.

Using the Nyquist criterion for generating the stability chart is a very time-consuming
process. A better technique is to search for the boundaries dividing stable and unstable
regions. Tobias [3] had presented several stability charts for machine tool chatter, and used
a numerical procedure to generate the chart. In revisiting Tobias’s works, it was found that
for the particular case of the regenerative chatter, it is possible to solve the problem
analytically, and thus to gain better insight into the solutions than given in previous
literature. The difficulty in solving the time-delayed feedback problem is that it is not
possible to produce an explicit expression for the relationship between the feedback force
and the time-delay. However, it is possible to produce two explicit expressions for the
relationship between the feedback force and frequency (imaginary part of the eigenvalue),
and between the time-delay and frequency. The stability chart can be easily produced from
this set of parametric equations. In fact, the relationship between the feedback force and
frequency alone provides insights into the shape of the stability regions and also provides
explicit expressions for the optima of the stability boundaries which are the delay-
independent stability criteria of the system.

This article introduces the use of the frequency as an intermediary term to derive
analytically the delay-dependent stability criteria for two types of time-delayed
displacement feedback single-degree-of-freedom (s.d.o.f.) systems: the regenerative chatter
problem, and a general linear time-delayed displacement feedback system.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



LETTERS TO THE EDITOR374
2. REGENERATIVE CHATTER PROBLEMS

2.1. FORMULATION

Numerous stability charts for machine tool chatter have been published since Tobias
introduced the regenerative chatter theory [3]. This theory assumed that chatter is
associated with a single mode of vibration of the tool and therefore can be modelled as an
s.d.o.f system. The cutting force is assumed to be proportional to the chip thickness, so it is
dependent on previous cutting conditions. For example, in lathe regenerative chatter, the
chip thickness, and hence the cutting force, are dependent on the current position of the
tool and on the position of the tool one revolution previously. The fluctuating cutting
force, df, is given by

df ¼ �KðxðtÞ � xðt � TÞÞ; ð1Þ

where K is a constant called cutting force factor, xðtÞ is the time-dependent displacement of
the tool from the equilibrium condition. xðt � TÞ is the displacement of the tool at time
t � T ; where T is the time delay. In regenerative chatter of a lathe, T ¼ 2p=O; where O is
the angular velocity of the work-piece. The cutting force factor K can also be regarded as
the gain of a feedback control system. Detailed physical reasoning of this formulation can
be found in references [3, 4].

The s.d.o.f. equation of motion of the tool is given as

m .xxðtÞ þ c ’xxðtÞ þ kxðtÞ ¼ �KðxðtÞ � xðt � TÞÞ; ð2Þ

where m; c; and k are the equivalent mass, damping coefficient and stiffness of the tool.
Equation (2) can be expressed as

.xxðtÞ þ 2zon ’xxðtÞ þ o2
nxðtÞ ¼ �Yo2

nðxðtÞ � xðt � TÞÞ; ð3Þ

where on ¼ ðk=mÞ1=2 is the natural frequency, z ¼ c=ccrit is the damping ratio, ccrit ¼
ð4mkÞ1=2 is the critical damping coefficient and Y ¼ K=k is the non-dimensional gain
factor. The solution of equation (3) has the form x ¼ Aelt; where l is the complex
characteristic value and is a function of z: Substituting x into equation (3) gives the
following characteristic equation:

l2 þ 2zonlþ o2
n þ Yo2

nð1 � e�lT Þ ¼ 0: ð4Þ

Because of the exponential term in the feedback, finding an analytical solution is
difficult, and there is no standard solution to this problem given in any of the textbooks on
control theory. Recently, work has been done relating to the delay-independent stability
criteria of systems with single time delay [5], and two time delays [6], and of time-delayed
dynamic systems of multiple degrees of freedom [7, 8], but an analytical treatment of
delay-dependent s.d.o.f. system, as presented in this article, has not been found.

Let l ¼ aþ io; where a is the decay rate and o is the angular frequency. Substituting a
and o into equation (4) and separating the real and imaginary parts gives

a2 � o2 þ 2zonaþ o2
n þ Yo2

nð1 � e�aT cosoTÞ ¼ 0; ð5aÞ

2aoþ 2zonoþ Yo2
ne

�aT sinoT ¼ 0: ð5bÞ

By introducing the non-dimensional terms D ¼ a=on; W ¼ o=on; and t ¼ Ton; the
above equations can be written in non-dimensional form as

D2 � W 2 þ 2zD þ 1 þ Y ð1 � e�Dt cos WtÞ ¼ 0; ð6aÞ

2DW þ 2zW þ Ye�Dt sin Wt ¼ 0: ð6bÞ
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These two simultaneous equations represent the dynamics of the tool, subjected to a
cutting force Y ; delayed by time t; and with system damping characteristic z: The dynamic
characteristics of the response are represented by the decay rate D; and the chatter
frequency W : The system is stable if D is negative, and unstable otherwise.

2.2. STABILITY BOUNDARIES

Instead of resorting to checking for stability using various stability criteria for a
particular situation as suggested by many numerical procedures, an analytical process is
used to determine the onset of instability. This process consists of finding all situations
when the decay rate is zero. Thus substituting D ¼ 0 into equations (6a) and (6b) gives two
simple stability boundary conditions:

�W 2 þ 1 þ Yð1 � cos WtÞ ¼ 0; 2zW þ Y sin Wt ¼ 0: ð7a; bÞ
The two parameters associated with the feedback terms are Y and t; so a complete

description of the stability condition of the closed-loop system can be represented on a
stability chart by plotting values of Y versus t that satisfy the two equations (7a) and (7b)
for a given damping ratio.

The difficulty in plotting the stability boundary is the presence of the frequency
parameter W : In many control problems the characteristic equations are polynomials so
W can often be found explicitly. The time-delay problem produces transcendental
characteristic equations, hence there is an infinite number of roots that are difficult to
express explicitly.

Instead of trying to eliminate W from equations (7a) and (7b), they may be rearranged
to produce two equations, explicitly expressing Y in terms of W and z; and t in terms of
Figure 1. Stability chart for regenerative feedback system on a force Y versus chatter frequency W map,
z ¼ 0:



Figure 2. Stability chart for regenerative feedback system on a force Y versus chatter frequency W map,
z ¼ 0:1:
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W and z: Rearranging equation (7b) gives

Y ¼ �2zW

sin Wt
ð8Þ

and substituting it into equation (7a) gives

�W 2 þ 1 � 2zW tan
Wt
2

¼ 0: ð9Þ

Hence,

t ¼ 2

W
tan�1 1 � W 2

2zW

� �
þ np

� �
; n ¼ 0; 1; 2; . . . ;1: ð10Þ

Substituting equation (10) into equation (8) to eliminate t; and simplifying to find an
explicit expression for Y in terms of W and z

Y ¼ �ð1 � W 2Þ2 � ð2zWÞ2

2 1 � W 2ð Þ : ð11Þ

The damping ratio z may be assumed to be constant for a particular system, and
therefore equations (10) and (11) represent a set of parametric equations for the stability
boundary in term of t and Y : Although there are an infinite number relationships between
t and W (equation (10)), there is only one curve for the stability boundary as expressed in
equation (11). Valuable insights can be gained from understanding the relationship
between Y and W :

For zero damping, z ¼ 0; Y is simply a parabola Y ¼ ðW 221Þ=2; with a discontinuity
at W ¼ 1 (see Figure 1). As damping increases (z > 0), the discontinuity at W ¼ 1
becomes more pronounced as shown in Figure 2. This curve represents the stability



Figure 3. Relationship between time delay t and chatter frequency W ; z ¼ 0:1; n ¼ 0; 1, 2, 3.
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boundary for the feedback gain factor Y as a function of frequency W for a given
damping ratio z:

Equation (6b) can be used to establish the regions of instability. The closed-loop system
is stable if D is negative and unstable otherwise. The second term of equation (6b)
indicates that as z increases, D becomes more negative. Noting that e�Dt is always positive,
the third term of equation (6b) indicates that if sin ðWtÞ is positive then Y is the same as
the damping term}that is the area above the stability boundary line is stable}whereas if
sin Wt is negative then the area below the stability boundary line is stable. Using equation
(10), we have

sin Wt ¼ 2zWð1 � W 2Þ
ð1 � W 2Þ2 þ ð2zWÞ2

: ð12Þ

It is obvious from equation (12) that sin ðWtÞ is positive when W51 and negative when
W > 1: Therefore, the region of instability can be established as shown in Figures 1 and 2.
For the regenerative chatter problem, Y is positive, so the instability region of interest is
the area for W > 1:

Another interesting fact that can be deduced from the Y2W relationship is that the
minimum point of the instability region can be found explicitly by differentiating equation
(11) with respect to W and equating to zero to give

dY

dW
¼ WðW 4 � 2W 2 þ 1 � 4z2Þ

ð1 � W 2Þ2
¼ 0: ð13Þ

There are five roots for this equation: they are W ¼ 0; or W ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z

p
: Root W ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2z
p

relates to the minimum of the instability region of interest, whereas W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z

p

is the maximum of the instability region for W51: The magnitudes of Y for these two



Figure 4. Relationship between repeat frequency X and chatter frequency W ; z ¼ 0:1; n ¼ 0; 1, 2, 3.

Figure 5. Stability chart for regenerative feedback system on a force Y versus repeat frequency X map,
z ¼ 0:1; n ¼ 027:
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values of W are

Y ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2z

p
Þ ¼ 2zð1 þ zÞ; ð14Þ

Y ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z

p
Þ ¼ �2zð1 � zÞ: ð15Þ

The relationship between t and W is complicated by the infinite number of curves
produced by the periodic nature of the transcendental equation. Figure 3 shows the curves
for n ¼ 0; 1, 2 and 3 for z ¼ 0:1: In a chatter problem, the time-delay term is usually
expressed in term of the repeat frequency of the delayed signal, O; or in non-dimensional
form X ¼ O=on ¼ 2p=t: Figure 4 shows the relationship between X and W : The standard
stability chart for regenerative chatter can be plotted parametrically using equations (10)
and (11) for a constant value of z: Figure 5 shows a stability chart for the case z ¼ 0:1: This
figure shows that the time-delay-independent stability criterion is Y52zð1 þ zÞ: For the
case of a very lightly damped system, z is close to zero, so the positions of the minimum of
the stability regions are close to t ¼ 3=4pþ 2np; or X ¼ 4=ð3 þ 4nÞ; which are the same as
those quoted in much of the literature on chatter (e.g., reference [4]).

3. TIME-DELAYED DISPLACEMENT FEEDBACK

This section uses the same procedure to determine analytically the stability
characteristics of an s.d.o.f. time-delayed displacement feedback system. The equation
of motion is

.xxðtÞ þ 2zon ’xxðtÞ þ o2
nxðtÞ ¼ Yo2

nxðt � TÞ: ð16Þ

Substituting x ¼ Aelt into equation (16) gives the following characteristic equation:

l2 þ 2zonlþ o2
n � Yo2

ne
�lT ¼ 0: ð17Þ

Applying a process similar to that used for the regenerative problem, a set of
characteristic equations can be written in non-dimensional form as

D2 � W 2 þ 2zD þ 1 � Ye�Dt cos Wt ¼ 0; ð18aÞ

2DW þ 2zW þ Ye�Dt sin Wt ¼ 0: ð18bÞ

Substituting D ¼ 0 into equations (18a) and (18b) gives two simple stability boundary
conditions

�W 2 þ 1 � Y cos Wt ¼ 0; 2zW þ Y sin Wt ¼ 0: ð19a; bÞ

Rearranging equation (19b) gives

Y ¼ �2zW

sin Wt
; ð20Þ

and substituting it into equation (19a) gives

�W 2 þ 1 þ 2zW

tan Wt
¼ 0: ð21Þ

Hence,

t ¼ 1

W
tan�1 2zW

W 2 � 1

� �
þ np

� �
; n ¼ 0; 1; 2; . . . ;1: ð22Þ



Figure 6. Stability charts for time-delayed feedback system on a force Y versus frequency W map, z ¼ 0: (a)
For n ¼ 0; 2, 4,. . .; (b) for n ¼ 1; 3, 5,. . . .
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This relationship is more complicated than the regenerative chatter case because of the
sign changes. The term sin Wt can be expressed explicitly as

sin Wt ¼ 2zWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 2 � 1Þ2 þ ð2zWÞ2

q for
W51; n ¼ 1; 3; 5; . . . ;

W > 1; n ¼ 0; 2; 4; . . . :

(
ð23aÞ

sin Wt ¼ �2zWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 2 � 1Þ2 þ ð2zWÞ2

q for
W51; n ¼ 0; 2; 4; . . . ;

W > 1; n ¼ 1; 3; 5; . . . :

(
ð23bÞ



Figure 7. Stability charts for time-delayed feedback system on a force Y versus frequency W map, z ¼ 0:1: (a)
For n ¼ 0; 2, 4, . . .; (b) for n ¼ 1; 3, 5,. . . .
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Substituting equations (23a) and (23b) into equation (20) to eliminate t; and simplifying,
an explicit expression for Y in terms of W and z can be found. It is

Y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 2 � 1Þ2 � ð2zWÞ2

q
for

W51; n ¼ 1; 3; 5; . . . ;

W > 1; n ¼ 0; 2; 4; . . . :

(
ð24aÞ

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW 2 � 1Þ2 � ð2zWÞ2

q
for

W51; n ¼ 0; 2; 4; . . . ;

W > 1; n ¼ 1; 3; 5; . . . :

(
ð24bÞ

Again, from equation (18b) the stability region is above the boundary line if sin Wt is
positive, and below the boundary line otherwise. Figures 6(a) and (b) show the stability
regions between Y and W for z ¼ 0; while Figures 7(a) and (b) show the stability regions
for z ¼ 0:1:



Figure 8. Relationship between time delay t and frequency W ; z ¼ 0: }} for n ¼ 0; 2; . . .. . . for n ¼ 1; 3.

Figure 9. Relationship between time delay t and frequency W ; z ¼ 0:1: }} for n ¼ 0; 2; . . .. . . for n ¼ 1; 3.
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Figures 8 and 9 show the relationship between t and W for z ¼ 0 and 0.1, respectively.
In Figure 8, as W increases from 0 to 1, t approaches np but jumps to ðn � 1

2
Þp at W ¼ 1:



Figure 10. Stability chart for time-delayed feedback system on a force Y versus time delay t map, z ¼ 0: Light
areas for n ¼ 0; 2, 4, 6 (from left to right); dark areas for n ¼ 1; 3, 5 (from left to right).

Figure 11. Stability chart for time-delayed feedback system on a force Y versus time delay t map, z ¼ 0:1:
Light areas for n ¼ 0; 2, 4, 6 (from left to right); dark areas for n ¼ 1; 3, 5 (from left to right).
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However, as W decreases from 1 to 1, t also approaches np but jumps to ðn þ 1=2Þp at
W ¼ 1:
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When combined, the stability charts for a delayed displacement feedback system can be
produced. Figures 10 and 11 show the relationship between Y and t for z ¼ 0 and 0.1,
respectively. Note that the instability regions for Y50 is for the negative displacement
feedback. These charts agree with the numerical simulations.

The delay-independent criteria can be found by differentiating equations (24a) and (24b)
with respect to W and equating to zero:

dY

dW
¼ 2

WðW 2 � 1 þ 2z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 4 � 2W 2 þ 1 þ ð2zWÞ2

q ¼ 0: ð25Þ

So, the minima are at W ¼ 0; or W ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2

p
; and the corresponding Y values are

Yð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2

q
Þ ¼ 2z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

q
ð26aÞ

for equation (24a), and

Yð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2z2

q
Þ ¼ �2z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

q
ð26bÞ

for equation (24b).
Note that the instability area corresponding to n ¼ 0 for Y > 1 is the static instability

due to the steady state error from an overdamped system.

4. CONCLUSION

This article presents a simple procedure to generate stability charts for the regenerative
chatter of an s.d.o.f. cutting system, and for a delayed displacement feedback system. This
technique solves the closed-loop system equation and finds the conditions that produce
zero decay rates, that is the boundaries of stability. The relationship between the feedback
force and frequency, and between the time-delay and frequency are found explicitly. The
stability chart can be easily produced from this set of parametric equations.

As can be seen from the stability charts that damping reduces the instability regions,
therefore it has been one of the key features in machine tool design, and in the design of
various feedback systems.

REFERENCES

1. I. Minis and R. Yanushevsky 1993 American Society of Mechanical Engineers Journal of
Engineering for Industry 115, 1–8. A new theoretical approach for the prediction of machine tool
chatter in milling.

2. I. Minis and A. Tembo 1993 American Society of Mechanical Engineers Journal of Engineering
for Industry 115, 9–14. Experimental verification of a stability theory for periodic cutting
operations.

3. S.A. Tobias 1965 Machine Tool Vibration. New York: Wiley.
4. D.B. Welbourn and J.D. Smith 1970 Machine-Tool Dynamics}An Introduction. Cambridge:

Cambridge University Press.
5. T. Mori and H. Kokame 1989 IEEE Transactions on Automatic Control 34, 460–462. Stability

of ’xxðtÞ ¼ AxðtÞ þ Bxðt � tÞ:
6. H.Y. Hu and Z.H. Wang 1998 Journal of Sound and Vibration 214, 213–225. Stability analysis

of damped SDOF systems with two time delays in state feedback.
7. Z.H. Wang and H.Y. Hu 1999 Journal of Sound and Vibration 226, 57–81. Delay-independent

stability of retarded dynamic systems of multiple degrees of freedom.
8. Z.H. Wang and H.Y. Hu 2000 Journal of Sound and Vibration 233, 215–233. Stability switches

of time-delayed dynamic systems with unknown parameters.


	1. INTRODUCTION
	2. REGENERATIVE CHATTER PROBLEMS
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	3. TIME-DELAYED DISPLACEMENT FEEDBACK
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11

	4. CONCLUSION
	REFERENCES

